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Supersymmetry and supergravity
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� commutator gives general 
coordinate transformations

Freedman, van Nieuwenhuizen, Ferrara



1. Scalar field theory and its 
symmetries: 

A. Poincaré group

Space with (xµ) = (t, �x)

Metric 
ds2 = −dtdt+ d�x · d�x = dxµηµνdxν

Algebra SO(1, D-1)

[m[µν],m[ρσ]] = ηνρm[µσ] − ηµρm[νσ]

−ηνσm[µρ]+ ηµσm[νρ]

Act on fields:  φ(x)=φ´(x´)ds = −dtdt+ d�x · d�x = dx ηµνdx

Isometries (preserve metric)

xµ = Λµνx
′ν + aµ

ΛµρηµνΛ
ν
σ = ηρσ

Expand
Λµν = δµν + λµν +O(λ2)

=

(
e
1
2λ

ρσm[ρσ]
)µ

ν

m[ρσ]
µ
ν ≡ δµρηνσ − δµσηρν = −m[σρ]

µ
ν

Act on fields:  φ(x)=φ´(x´)

φ′(x) = U(Λ)φ(x) = φ(Λx)

U(Λ) ≡ e
−12λ

ρσL[ρσ]

L[ρσ] ≡ xρ∂σ − xσ∂ρ

More general if not scalar fields

ψ′i(x) = U(Λ, a)ijψ
j(x)

=

(

e
−12λ

ρσm[ρσ]

)i

jψ
j(Λx+ a)

J[ρσ] = L[ρσ] +m[ρσ] ,



B. Other symmetries and currents



Exercises on chapter 1

� Ex 1.5: Show that the action 

is invariant under the transformation

S =
∫
dDxL(x) = −12

∫
dDx

[
ηµν∂µφ

i∂νφ
i+m2φiφi

]

φi(x)
Λ
−→ φ′i(x) ≡ φi(Λx).

� Ex.1.6: Compute the commutators 

and show that they agree with that for matrix
generators. Show that to first order in λρσ

φ (x) −→ φ′ (x) ≡ φ (Λx).
Important: fields transform, not the integration variables

[L[µν], L[ρσ]]

φi(xµ)− 1
2λ

ρσL[ρσ]φ
i(xµ) = φi(xµ+ λµνxν)



2. The Dirac field



Exercise on chapter 2
� Show using the fundamental relation of 

gamma matrices that 

� Prove the consistency of
[Σµν, γρ] = 2γ[µην ]ρ = γµηνρ − γνηµρ

� Prove the consistency of

� Prove then the invariance of the action
δΨ = −12λ

µνΣµνΨ , δΨ̄ = 1
2λ

µνΨ̄Σµν

S[Ψ̄,Ψ] = −
∫
dDxΨ̄[γµ∂µ −m]Ψ(x)



3. Clifford algebras and spinors

� Determines the properties of 
- the spinors in the theory
- the supersymmetry algebra

� We should know� We should know
- how large are the smallest spinors in each 

dimension
- what are the reality conditions
- which bispinors are (anti)symmetric 

(can occur in superalgebra)



3.1 The Clifford algebra in general 
dimension

3.1.1 The generating g matrices

Hermiticity (hermitian for spacelike)Hermiticity γµ† = γ0γµγ0 (hermitian for spacelike)

representations related by conjugacy by unitary S

γ′µ = SγµS−1



3.1.2 The complete Clifford algebra

γµ1...µr = γ[µ1 . . . γµr] , e.g. γµν = 1
2γ

µγν−12γ
νγµ

3.1.3 Levi-Civita symbol

ε012(D−1) = 1 , ε012(D−1) = −1

3.1.4 Practical g -gamma matrix manipulation

γµγµ = D , γµνγν = (D − 1)γµ



3.1.5 Basis of the algebra for even 
dimension D = 2 m

{ΓA = , γµ, γµ1µ2, γµ1µ2µ3, · · · , γµ1···µD}

with µ 1< µ 2 < ...< µ r

{Γ = , γ , γ , γ , . . . , γ } .
reverse order list
{ΓA = , γµ, γµ2µ1, γµ3µ2µ1, . . . , γµD···µ1} .

Tr(ΓAΓB) = 2m δAB

expansion for any matrix in spinor space M

M =
∑

A

mAΓ
A , mA =

1

2m
Tr(MΓA)



3.1.6 The highest rank Clifford 
algebra element



3.1.7 Odd spacetime dimension 
D=2m+1

g matrices dan be constructed in two ways from 
those in D=2m:

The set with all                  is overcompleteγµ1...µr



3.2 Supersymmetry and 
symmetry of bi-spinors (intro)

� E.g. a supersymmetry on a scalar is a symmetry 
transformation depending on a spinor ε: 

� For the algebra we should obtain a GCT� For the algebra we should obtain a GCT

� Then the GCT parameter 
should be antisymmetric in the spinor parameters

Thus, to see what is possible, we have to know the 
symmetry properties of bi-spinors

ξξξξµµµµ



3.2 Spinors in general dimensions
3.2.1 Spinors and spinor bilinears

Majorana conjugate

� with anticommuting
spinors

Since symmetries of spinor bilinears are important for
supersymmetry, we use 

the Majorana conjugate to define λ.



3.2.2 Spinor indices

NW-SE
convention



3.2.4 Reality

Complex conjugation can be replaced by charge 
conjugation, an operation that acts as complex conjugation 
on scalars, and has a simple action on fermion bilinears. 

For example, it preserves the order of spinor factors.



3.3 Majorana spinors
� A priori a spinor ψ has 2Int[D/2] (complex) components

� Using e.g. ‘left’ projection PL = (1+γ*)/2 

‘Weyl spinors’ PL ψ= ψ if D is even (otherwise trivial)

� In some dimensions (and signature) there are reality conditions 

ψ =ψC = B−1 ψ*ψ =ψC = B−1 ψ*

consistent with Lorentz algebra: ‘Majorana spinors’

� consistency requires t1 = -1.



Other types of spinors

� If t1=1: Majorana condition not consistent

� Define other reality condition (for an even number of spinors):

� ‘Symplectic Majorana spinors’

� In some dimensions Weyl and Majorana can be combined, e.g. 

reality condition for Weyl spinors: ‘Majorana-Weyl spinors’



� Dependent on signature. 
Here: Minkowski

Dim Spinor min.# comp

2 MW 1

3 M 2

4 M 4

5 S 8

Possibilities  for susy depend on the
properties of irreducible spinors
in each dimension

Here: Minkowski

� M: Majorana
MW: Majorana-Weyl
S: Symplectic
SW: Symplectic-Weyl

5 S 8

6 SW 8

7 S 16

8 M 16

9 M 16

10 MW 16

11 M 32



3.4 Majorana OR Weyl fields in 
D=4

� Any  field theory of a Majorana spinor field Ψ

can be rewritten in terms of a Weyl field PLΨ

and its complex conjugate.

� Conversely, any theory involving the  chiral field � Conversely, any theory involving the  chiral field 
χ=PLχ and its conjugate χC=PRχC can be 
rephrased as a Majorana equation if one defines 
the Majorana field Ψ =PLχ +PRχ C.

� Supersymmetry theories in D=4 are formulated 
in both descriptions in the physics literature.



Exercise on chapter 3
� Ex. 3.40: Rewrite

as

S[Ψ] = −12

∫
dDx Ψ̄[γµ∂µ −m]Ψ(x)

S[ψ] = −12

∫
d4x

[
Ψ̄γµ∂µ −m

]
(PL+ PR)Ψ

∫ [ ]

and prove that the Euler-Lagrange equations are

Derive � PL,RΨ = m2 PL,RΨ from the equations above

−
∫ [

−
]

= −
∫
d4x

[
Ψ̄γµ∂µPLΨ− 1

2mΨ̄PLΨ− 1
2mΨ̄PRΨ

]
.

/∂PLΨ= mPRΨ , /∂PRΨ = mPLΨ .



4. The Maxwell and Yang-Mills Gauge 
Fields

4.1 The Abelian gauge field Aµ(x)



4.3 Non-abelian gauge symmetry
� Simplest: act by matrices and

� Gauge fieldsfor any generator
cov. derivative:
needs transform:

DµΨ=
(
∂µ+ gtAA

A
µ

)
Ψ

δAAµ (x) =
1

g
∂µθ

A+ θC(x)ABµ (x)fBC
A

� Curvatures

� Typical action

δAµ (x) = g
∂µθ + θ (x)Aµ (x)fBC

[Dµ,Dν]Ψ = gFAµνtAΨ

FAµν = ∂µA
A
ν − ∂νA

A
µ + gfBC

AABµA
C
ν

S[AAµ , Ψ̄α,Ψ
α] =

∫
dDx

[
−14F

AµνFAµν

−Ψ̄α(γ
µDµ −m)Ψα]



Exercise on chapter 4

� Ex. 4.17: Use the Jacobi identity to show that the 
matrices (tA)D

E =fAE
D satisfy [tA ,tB]= fAB

C tC and 
therefore give a representation 

� Ex 4.21: Show that � Ex 4.21: Show that 

is satisfied identically if Fµ ν
A is written in the form

DµF
A
νρ + DνF

A
ρµ + DρF

A
µν = 0

FAµν = ∂µA
A
ν − ∂νA

A
µ + gfBC

AABµA
C
ν



6. N=1 Global supersymmetry in D=4

� Classical algebra



6.2. SUSY field theories of 
the chiral multiplet

� Transformation under SUSY

� Algebra

� Simplest action

� Potential term



6.2.2 The SUSY algebra

• A transformation is a parametertimes a generator

• Calculating a commutator• Calculating a commutatorbosonic 



Calculating the algebra
� Very simple on Z

� On fermions: more difficult; needs Fierz rearrangement

� With auxiliary field: algebra satisfied for all field 
configurations
Without auxiliary field: satisfied modulo field equations. Without auxiliary field: satisfied modulo field equations. 

� auxiliary fields lead to 
- transformations independent of e.g. the superpotential

- algebra universal : ‘closed off-shell’

- useful in determining more general actions

- in local SUSY: simplify couplings of ghosts



6.3. SUSY gauge theories
6.3.1 SUSY Yang-Mills vector multiplet  

gauge)



6.3.2 Chiral multiplets in SUSY gauge 
theories



6.4 Massless representations of 
N -extended supersymmetry



6.4.1 Particle representations of N –
extended supersymmetry

� There is an argument that 
# bosonic d.o.f.= # fermionic d.o.f.,
based on {Q,Q}=P (invertible)

Q

� Should be valid for on-shell multiplets if eqs. of 
motion are satisfied:        e.g. z : 2,  χ : 2 ⇒⇒⇒⇒ 2+2

� for off-shell multiplets counting all components:
e.g. z : 2, χ : 4,  h : 2 ⇒⇒⇒⇒ 4+4



Spin content of representations of 
supersymmetry with maximal spin smax≤ 2.



Exercise on chapter 6
� Ex. 6.11 : Consider the theory of the chiral multiplet 

after elimination of F. Show that the action

is invariant under the transformation rules

Show that the commutator on the scalar is still

but is modified on the fermion as follows:

We find the spacetime translation plus an extra term that vanishes for 
any solution of the equations of motion.



7.9 Connections and covariant 
derivatives

metric postulate

if there is no ‘torsion’ Γ
ρ
µν = Γ

ρ
νµ

Γρµν = Γρµν(g) =
1
2g
ρσ(∂µgσν + ∂νgµσ − ∂σgµν)



7.12 Symmetries and Killing vectors
7.12.1 σ– model symmetries

Symmetries of action S[φ] = −
1

2

∫
dDx gij(φ)η

µν∂µφ
i∂νφ

j

can be parametrized as a general form

Each kA
i (for every value of A) should satisfyEach kA (for every value of A) should satisfy

Solutions are called ‘Killing vectors’ 

and satisfy an algebra



7.12.2 Symmetries of the Poincaré plane

Poincaré plane (X, Y>0)



Exercise on chapter 7
� Ex. 7.48: Consider for the Poincaré plane Z and     as the 

independent fields, rather than X and Y, and use the line element

The metric components are

Z̄

Show that the only non-vanishing components of the Christoffel
connection are ΓZZ

Z and its complex conjugate. Calculate them and 
then show that there are three Killing vectors, 

each with conjugate. Show that their Lie brackets give  a Lie algebra 
whose non-vanishing structure constants are

This is a standard presentation of the Lie algebra of

su(1,1) = so(2,1) = sl(2)



12. Survey of supergravities

� To get an overview of what is possible

� and how geometry enters in supergravity



12.1 The minimal superalgebras
12.1.1.   D=4

� Minimal algebra

� Extension (using Weyl spinors and position of indices 
indicating chirality)indicating chirality)

� Algebras exist for any N . 
Field theory : N≤ 8 i.e. at most 32 real supercharges. 
SUSY: N≤ 4: 16 real supercharges 



12.1.2. Minimal superalgebras in 
higher dimensions

� is only consistent for t1= −1, i.e. Majorana

� previous can also be applied to D=8: 
but then only N=1 or N=2.

D #

4 M 4

5 S 8

6 SW 8

7 S 16
� Also same (without chirality) 

for D=9 (N=1 or N=2) and D=11 (N=1)

� D=10:  supercharges can be chiral. 
The two Q’s should have equal chirality
- 1 chiral supercharge : “type I”

- 2 of opposite chirality “type IIA”

- 2 of same chirality: type IIB”

7 S 16

8 M 16

9 M 16

10 MW 16

11 M 32



12.2 The R-symmetry group

� Supersymmetries may rotate under an 
automorphism group. E.g. for 4 dimensions:

� related by charge conjugation: 

� Jacobi identities [TTQ] : U forms a 
representation of T-algebra

� Jacobi identities [TQQ] :

� related by charge conjugation: 

→  forms U(N) group



R-symmetry groups

� Majorana spinors in odd dimensions: 
SO(N) (D=3,9)

� Majorana spinors in even dimensions: 
U(N) (D=4,8)

group that rotates susys:

U(N) (D=4,8)

� Majorana-Weyl spinors:  
SO(NL) µ SO(NR) (D=2,10)

� Symplectic spinors: 
USp(N) (D=5,7)

� Symplectic Majorana-Weyl spinors: 
USp(NL) µ USp(NR) (D=6)



12.4 Supergravity theories: 
towards a catalogue

� basic theories and kinetic terms

� deformations and gauged supersymmetry
- covariant derivatives and field strengths

- potential for the scalars



The map: dimensions and 
# of supersymmetries

D susy 32 24 20 16 12 8 4

11 M M

10 MW IIA IIB I

9 M N=2 N=1

8 M N=2 N=1

Strathdee,1987

8 M N=2 N=1

7 S N=4 N=2

6 SW (2,2) (2,1) (1,1) (2,0) (1,0)

5 S N=8 N=6 N=4 N=2

4 M N=8 N=6 N=5 N=4 N=3 N=2 N=1

SUGRA SUGRA/SUSY SUGRA SUGRA/SUSY

vector multiplets
vector multiplets +
multiplets up to spin 1/2tensor multiplet



12.5  Scalars and geometry
� Scalar manifold can have isometries 

(symmetry of kinetic energy   ds2=gij dφ i dφ j ) 
� usually extended to symmetry of full action 

(‘‘ UU--duality groupduality group’)’)
� The connection between scalars and vectors in the matrix 

(φ)  
� The connection between scalars and vectors in the matrix 
NAB(φ)  
⇒⇒⇒⇒ isometries act also as duality transformations

� A subgroup of the isometry group (at most of dimension m)
can be gauged.



Homogeneous / Symmetric manifolds
� If isometry group G connect all points of a manifold →

homogeneous manifold. 
Such a manifold can be identified with the coset G/H, 
where H is the isotropy group: group of transformations 
that leave a point invariant

� If the algebras    of G and     of H have the structureh� If the algebras    of G and     of H have the structure

then the manifold is symmetric. 
The curvature tensor is covariantly constant

g h



Geometries in supergravity

� Scalar manifolds for theories with more than 8 
susysare symmetric spaces: susysare symmetric spaces: 

� Scalar manifolds for theories with 4 susys
(N=1, D=4, or lower D) are Kähler

� Scalar manifolds for theories with 8 susys are 
called ‘special manifolds’. 
Include real, special Kähler, quaternionic manifolds
They can be symmetric, homogeneous, or not even that



� With > 8 susys: symmetric spaces

The map of geometries

� 8 susys: very special, 
special Kähler and 
quaternionic spaces SU(2)=USp(2)

part in 
holonomy group

U(1) part in 
holonomy group

� 4 susys: Kähler: U(1) part in holonomy group



Exercise on Chapter 12

� Ex.12.3Consider an arbitrary point in the Poincaré plane 
and find the Killing vector cA kA that vanishes. Check that 
the other two Killing vectors in that point are 
independent.

� Ex.12.4Why do the isotropy generators define a group? � Ex.12.4Why do the isotropy generators define a group? 
How do you associate the manifold to the coset space?

� Ex 12.5 Check that the Poincaré plane is a symmetric 
space.



13. Complex manifolds
13.1 The local description of complex 

and Kähler manifolds

� Use complex coordinates 

Hermitian manifold
define fundamental 2-form

Kähler manifold: closed fundamental 2-form



Properties of metric, connection, 
curvature for Kähler manifolds

� metric derivable from a ‘Kähler potential’

� connections have only unmixed components

� curvature components related to
- (two holomorphic indiees up and 

down, and symmetric in these pairs)

� Ricci tensorRab = gcdRacbd = Rba



13.2 Mathematical structure of 
Kähler manifolds

� starts from a complex structure
- almost complex: tensor on tangent space Ji

k Jk
j= - δi

j  

- Nijenhuis tensor vanishes. In presence of a torsion-free 
connection, this is implied by covariant constancy of complex 
structurestructure

- metric hermitian : JgJT=g 
and Levi-Civita connection of this metric is used above

� Then the Kähler form is 

� In complex coordinates



13.4 Symmetries of Kähler metrics
13.4.1 Holomorphic Killing vectors and 

moment maps

� require vanishing Lie derivatives of metric and of 
complex structure.

� Implies that in complex coordinates 
- the Killing vector is holomorphic

- Lie derivative of Killing form vanishes 
→ Killing vectors determined by real moment map P

PS: a Kähler manifold is a
symplectic manifold due to the 
existence of the Kähler 2-form. 
Moment map is generating function 
of a canonical transformation 



Kähler transformations and the moment map

� Kähler potential is not unique:

� Kähler transformations

� Also for symmetries� Also for symmetries



Exercises on chapter 13
� Ex. 13.14: Show that the metric of the Poincaré plane of 

complex dimension 1 is a Kähler metric. 
What is the Kähler potential?

� Ex. 13.18: Consider CP1with Killing potential
- Check that there are 3 Killing vectors 

- that satisfy the su(2) algebra

� Ex. 13.20: Apply
to obtain  
Note that the Kähler potential is invariant under k3, but still r3 ≠ 0.  

Its value is fixed by the ‘equivariance relation’

[kA , kB] = εABCkC



14. General actions with N=1 
supersymmetry

14.1 Multiplets
� Multiplets are sets of fields on which the 

supersymmetry algebra is realized. 

� A chiral multiplet is a multiplet in which the 
transformation of the lowest (complex scalar) 
component involves only PLǫ.

� A real multiplet is a multiplet in which the 
lowest component is a real scalar.

� Allowing general SUSY transformations with 
these requirements determines the multiplet



14.1.1 Chiral multiplets

14.1.2 Real multiplets

gauge multipletis a submultiplet: 
a real multiplet with only components invariant under
a supergauge transformation C → C + Im Z
Wess-Zumino gauge : C=ζ= H =0



14.2 Generalized actions by 
multiplet calculus

Can be applied to ‘composite multiplets’ 
constructed from elementary ones.
Reality: D is real, but F is complex: add complex conjugate
Terminology: 
F-type actions for composite chiral multiplets, 
D-type actions for composite real multiplets



14.2.1 The superpotential
� Start with W(Z): is chiral → F-action

14.2.2 Kinetic terms for chiral multiplets
� Start from                : is real → D-actionK(Z, Z̄)

14.2.3 Kinetic terms for gauge multiplets

� See that PL λ transforms chirally 

� Start with                      : is chiral → F-actionfAB(Z)λ̄
APLλ

B



14.3 Kähler geometry 
from chiral multiplets

Kähler metric

elimination of auxiliary fields


