Supersymmetric field theories

Antoine Van Proeyen KU Leuven

Summer school on Differential Geometry and Supersymmetry, September 10-14, 2012, Hamburg

Supergravity

Daniel Freedman and Antoine Van Proeyen

CAMBRIDGE

Based on some chapters of the book 'Supergravity'

Wess, Zumino Supersymmetry and supergravity supersymmetry $\delta A(x) = \overline{\varepsilon} \psi(x)$ $\delta \psi(x) = \gamma^{\mu} \varepsilon \frac{\partial}{\partial x^{\mu}} A(x)$ **Bosons and fermions** in one multiplet commutator gives general coordinate transformations $[\delta(\varepsilon_1), \delta(\varepsilon_2)] = \overline{\varepsilon_2} \gamma^{\mu} \varepsilon_1 \frac{\partial}{\partial r^{\mu}}$ or $\{Q,Q\} = \gamma^{\mu} P_{\mu}$ \Rightarrow gauge theory contains gravity: Supergravity

Freedman, van Nieuwenhuizen, Ferrara

1. Scalar field theory and its symmetries:

A. Poincaré group

Space with $(x^{\mu}) = (t, \vec{x})$ Metric $ds^2 = -dtdt + d\vec{x} \cdot d\vec{x} = dx^{\mu}\eta_{\mu\nu}dx^{\nu}$

Isometries (preserve metric) $x^{\mu} = \Lambda^{\mu}{}_{\nu}x'^{\nu} + a^{\mu}$ $\Lambda^{\mu}{}_{\rho}\eta_{\mu\nu}\Lambda^{\nu}{}_{\sigma} = \eta_{\rho\sigma}$

Expand $\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu} + \lambda^{\mu}{}_{\nu} + \mathcal{O}(\lambda^{2})$ $= \left(e^{\frac{1}{2}\lambda^{\rho\sigma}m}{}_{[\rho\sigma]}\right)^{\mu}{}_{\nu}$ $m_{[\rho\sigma]}{}^{\mu}{}_{\nu} \equiv \delta^{\mu}{}_{\rho}\eta_{\nu\sigma} - \delta^{\mu}{}_{\sigma}\eta_{\rho\nu} = -m_{[\sigma\rho]}{}^{\mu}{}_{\nu}$ Algebra SO(1, D-1) $[m_{[\mu\nu]}, m_{[\rho\sigma]}] = \eta_{\nu\rho} m_{[\mu\sigma]} - \eta_{\mu\rho} m_{[\nu\sigma]} - \eta_{\nu\sigma} m_{[\mu\rho]} + \eta_{\mu\sigma} m_{[\nu\rho]}$

Act on fields: $\phi(\mathbf{x}) = \phi'(\mathbf{x}')$ $\phi'(x) = U(\Lambda)\phi(x) = \phi(\Lambda x)$ $U(\Lambda) \equiv e^{-\frac{1}{2}\lambda^{\rho\sigma}L[\rho\sigma]}$ $L_{[\rho\sigma]} \equiv x_{\rho}\partial_{\sigma} - x_{\sigma}\partial_{\rho}$

More general if not scalar fields $J_{[\rho\sigma]} = L_{[\rho\sigma]} \mathbb{1} + m_{[\rho\sigma]},$ $\psi'^{i}(x) = U(\Lambda, a)^{i}{}_{j}\psi^{j}(x)$ $= \left(e^{-\frac{1}{2}\lambda^{\rho\sigma}m_{[\rho\sigma]}}\right)^{i}{}_{j}\psi^{j}(\Lambda x + a)$

B. Other symmetries and currents

Generic infinitesimal

$$\delta \phi^i(x) \equiv \epsilon^A \Delta_A \phi^i(x) ,$$

(constant parameters).

Transformation of Lagrangian:

$$\delta \mathcal{L} \equiv \epsilon^A \left[\frac{\delta \mathcal{L}}{\delta \partial_\mu \phi^i} \partial_\mu \Delta_A \phi^i + \frac{\delta \mathcal{L}}{\delta \phi^i} \Delta_A \phi^i \right] = \epsilon^A \partial_\mu K^\mu_A \,.$$

Leads to conserved currents

$$J^{\mu}{}_{A} = -\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \phi^{i}} \Delta_{A} \phi^{i} + K^{\mu}_{A}, \qquad \partial_{\mu} J^{\mu}{}_{A} \approx 0.$$

Exercises on chapter 1

• Ex 1.5: Show that the action $S = \int d^{D}x \mathcal{L}(x) = -\frac{1}{2} \int d^{D}x \left[\eta^{\mu\nu} \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{i} + m^{2} \phi^{i} \phi^{i} \right]$ is invariant under the transformation $\phi^{i}(x) \xrightarrow{\Lambda} \phi'^{i}(x) \equiv \phi^{i}(\Lambda x).$

Important: fields transform, not the integration variables **Ex.1.6:** Compute the commutators $[L_{[\mu\nu]}, L_{[\rho\sigma]}]$ and show that they agree with that for matrix generators. Show that to first order in $\lambda^{\rho\sigma}$

$$\phi^{i}(x^{\mu}) - \frac{1}{2}\lambda^{\rho\sigma}L_{[\rho\sigma]}\phi^{i}(x^{\mu}) = \phi^{i}(x^{\mu} + \lambda^{\mu\nu}x_{\nu})$$

2. The Dirac field
$$\partial \Psi(x) \equiv \gamma^{\mu} \partial_{\mu} \Psi(x) = m \Psi(x)$$
.

$$\{\gamma^{\mu},\gamma^{\nu}\}\equiv\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2\,\eta^{\mu\nu}\,\mathbb{1}$$

Lorentz transformations generated by

$$\Sigma^{\mu
u} \equiv \frac{1}{4} \left[\gamma^{\mu}, \gamma^{
u}
ight] ,$$

which satisfies Lorentz algebra.

For actions we need

$$\bar{\Psi} = \Psi^{\dagger}\beta = \Psi^{\dagger}i\gamma^{0},$$

such that spinor bilinears can be formed that are Lorentz invariants:

 $\delta \Psi = -\frac{1}{2} \lambda^{\mu\nu} \Sigma_{\mu\nu} \Psi, \qquad \delta \bar{\Psi} = \frac{1}{2} \lambda^{\mu\nu} \bar{\Psi} \Sigma_{\mu\nu}$

Exercise on chapter 2

Show using the fundamental relation of gamma matrices that $[\Sigma^{\mu\nu}, \gamma^{\rho}] = 2\gamma^{[\mu}\eta^{\nu]\rho} = \gamma^{\mu}\eta^{\nu\rho} - \gamma^{\nu}\eta^{\mu\rho}$ Prove the consistency of $\delta \Psi = -\frac{1}{2} \lambda^{\mu\nu} \Sigma_{\mu\nu} \Psi, \qquad \delta \bar{\Psi} = \frac{1}{2} \lambda^{\mu\nu} \bar{\Psi} \Sigma_{\mu\nu}$ Prove then the invariance of the action $S[\bar{\Psi},\Psi] = -\int \mathrm{d}^D x \bar{\Psi}[\gamma^\mu \partial_\mu - m] \Psi(x)$

3. Clifford algebras and spinors

Determines the properties of

- the spinors in the theory
- the supersymmetry algebra
- We should know
 - how large are the smallest spinors in each dimension
 - what are the reality conditions
 - which bispinors are (anti)symmetric (can occur in superalgebra)

3.1 The Clifford algebra in general dimension

$$\{\gamma^{\mu},\gamma^{
u}\}\equiv\gamma^{\mu}\gamma^{
u}\,+\,\gamma^{
u}\gamma^{\mu}=2\,\eta^{\mu
u}\,$$

3.1.1 The generating γ matrices

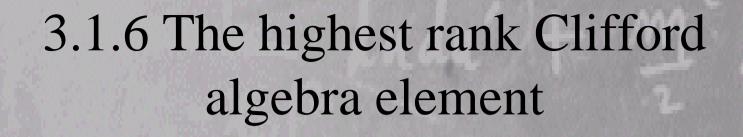
Hermiticity $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$ (hermitian for spacelike)

representations related by conjugacy by unitary S

$$\gamma'^{\mu} = S \gamma^{\mu} S^{-1}$$

3.1.2 The complete Clifford algebra $\gamma^{\mu_1\dots\mu_r} = \gamma^{[\mu_1}\dots\gamma^{\mu_r]}, \quad \text{e.g.} \quad \gamma^{\mu\nu} = \frac{1}{2}\gamma^{\mu}\gamma^{\nu} - \frac{1}{2}\gamma^{\nu}\gamma^{\mu}$ 3.1.3 Levi-Civita symbol $e^{012(D-1)} = -1$ $\varepsilon_{012(D-1)} = 1,$ 3.1.4 Practical γ -gamma matrix manipulation $\gamma^{\mu}\gamma_{\mu}=D\,,\qquad \gamma^{\mu
u}\gamma_{
u}=(D-1)\gamma^{\mu}$

3.1.5 Basis of the algebra for even dimension D = 2 m $\{\Gamma^{A} = \mathbb{1}, \gamma^{\mu}, \gamma^{\mu_{1}\mu_{2}}, \gamma^{\mu_{1}\mu_{2}\mu_{3}}, \dots, \gamma^{\mu_{1}\dots\mu_{D}}\}$ with $\mu_1 < \mu_2 < \ldots < \mu_r$ reverse order list $\{\Gamma_A = \mathbb{1}, \gamma_{\mu}, \gamma_{\mu_2\mu_1}, \gamma_{\mu_3\mu_2\mu_1}, \dots, \gamma_{\mu_D\cdots\mu_1}\}.$ $\operatorname{Tr}(\Gamma^A \Gamma_B) = 2^m \delta^A_B$ expansion for any matrix in spinor space M $M = \sum m_A \Gamma^A$, $m_A = \frac{1}{2m} \operatorname{Tr}(M\Gamma_A)$



$$\gamma_*\equiv(-i)^{m+1}\gamma_0\gamma_1\ldots\gamma_{D-1}\,,$$

which satisfies $\gamma_*^2=\mathbb{1}.$
E.g. $D=$ 4: $\gamma_*=i\gamma_0\gamma_1\gamma_2\gamma_3.$

Projections $P_L = \frac{1}{2}(1 + \gamma_*), \quad P_R = \frac{1}{2}(1 - \gamma_*).$

3.1.7 Odd spacetime dimension D=2m+1

 γ matrices dan be constructed in two ways from those in D=2m:

$$\gamma_{\pm}^{\mu} = (\gamma^0, \gamma^1, \dots, \gamma^{(2m-1)}, \gamma^{2m} = \pm \gamma_*)$$

The set with all $\gamma^{\mu_1 \dots \mu_r}$ is overcomplete

$$\gamma_{\pm}^{\mu_1\dots\mu_r} = \pm \mathrm{i}^{m+1} \frac{1}{(D-r)!} \varepsilon^{\mu_1\dots\mu_D} \gamma_{\pm\,\mu_D\dots\mu_{r+1}}$$

3.2 Supersymmetry and symmetry of bi-spinors (intro) • E.g. a supersymmetry on a scalar is a symmetry transformation depending on a spinor ϵ : $\delta(\epsilon)\phi(x) = \overline{\epsilon}\psi(x)$ For the algebra we should obtain a GCT $[\delta(\epsilon_2), \delta(\epsilon_1)] \phi(x) = \overline{\epsilon_1} \gamma^{\mu} \overline{\epsilon_2} \partial_{\mu} \phi(x)$ Then the GCT parameter should be antisymmetric in the spinor parameters $\xi^{\mu} = \overline{\epsilon}_1 \gamma^{\mu} \epsilon_2 = -\overline{\epsilon}_2 \gamma^{\mu} \epsilon_1$ Thus, to see what is possible, we have to know the symmetry properties of bi-spinors

3.2 Spinors in general dimensions							
3.2.1 Spinors and spinor bilinears							
Majorana conjugate	D (mod 8)	$t_r = -1$	$t_r = +1$				
	0	0,3	2,1				
$\bar{\lambda} = \lambda^T C$		0,1	2,3				
C is a matrix such that C	$\gamma_{\mu_1\mu_r}$ are	0,1 و	2,3				
			2,3				
all symmetric or antisymmetric,			0,3				
depending only on D and	1,2	0,3					
	1,2	0,3					
with anticommuting		2,3	0,1				
spinors	5	2,3	0,1				
Spinors	6	2,3	0,1				
$\bar{\lambda}\gamma_{\mu_1\dots\mu_r}\chi = t_r\bar{\chi}\gamma_{\mu_1\dots\mu_r}\lambda$		0,3	1,2				
	7	0,3	1,2				

Since symmetries of spinor bilinears are important for supersymmetry, we use the Majorana conjugate to define $\overline{\lambda}$.

$$\begin{array}{l} 3.2.2 \ \text{Spinor indices} \\ \lambda^{\alpha} = \mathcal{C}^{\alpha\beta} \lambda_{\beta}, \qquad \lambda_{\alpha} = \lambda^{\beta} \mathcal{C}_{\beta\alpha}. \\ \text{Note that } \mathcal{C}_{\alpha\beta} \ \text{are components of } C^{-1} \qquad \text{NW-SE} \\ \text{and } \mathcal{C}^{\alpha\beta} \ \text{of } C^{T}. \qquad \text{Convention} \\ \end{array}$$

$$\begin{array}{l} \text{Translations:} \\ \bar{\chi}\gamma_{\mu}\lambda = \chi^{\alpha}(\gamma_{\mu})_{\alpha}{}^{\beta}\lambda_{\beta}, \\ \text{and also} \\ (\gamma_{\mu})_{\alpha\beta} = (\gamma_{\mu})_{\alpha}{}^{\gamma}\mathcal{C}_{\gamma\beta} \\ \text{Have symmetry } -t_{1}: \ (\gamma_{\mu})_{\alpha\beta} = -t_{1}(\gamma_{\mu})_{\beta\alpha}. \end{array}$$

3.2.4 Reality

Complex conjugation can be replaced by charge conjugation, an operation that acts as complex conjugation on scalars, and has a simple action on fermion bilinears. For example, it preserves the order of spinor factors.

In fact complex conjugation uses

$$\gamma^{\mu*} = -t_0 t_1 B \gamma^{\mu} B^{-1}, \qquad B \equiv i t_0 C \gamma^0$$

We use

$$\lambda^C \equiv B^{-1} \lambda^*, \qquad (\gamma_\mu)^C \equiv B^{-1} \gamma_\mu^* B = (-t_0 t_1) \gamma_\mu.$$

It works like this:

$$(\bar{\chi}M\lambda)^* \equiv (\bar{\chi}M\lambda)^C = (-t_0t_1)\overline{\chi^C}M^C\lambda^C$$

3.3 Majorana spinors

A priori a spinor ψ has 2^{Int[D/2]} (complex) components
Using e.g. 'left' projection P_L = (1+γ_{*})/2 'Weyl spinors' P_L ψ= ψ if D is even (otherwise trivial)
In some dimensions (and signature) there are reality conditions ψ=ψ^C = B⁻¹ ψ^{*} consistent with Lorentz algebra: 'Majorana spinors'

• consistency requires $t_1 = -1$.

Other types of spinors

- If t₁=1: Majorana condition not consistent
 - Define other reality condition (for an even number of spinors): $\chi^{i} = \varepsilon^{ij} (\chi^{j})^{C}$
 - 'Symplectic Majorana spinors'
- In some dimensions Weyl and Majorana can be combined, e.g. reality condition for Weyl spinors: 'Majorana-Weyl spinors'
 D = 2 mod 8:

 $\begin{array}{lll} \text{Majorana:} & \psi^C = \psi \,, & \text{Weyl:} & P_{L,R}\psi = \psi \\ \\ D = 4 \, \, \text{mod} \, \, 4 \\ & (P_L\psi)^C = P_R\psi \,, & (P_R\psi)^C = P_L\psi \end{array}$

Possibilities for susy depend on the properties of irreducible spinors in each dimension

- Dependent on signature. Here: Minkowski
- M: Majorana
 MW: Majorana-Weyl
 S: Symplectic
 SW: Symplectic-Weyl

Dim	Spinor	min.# comp
2	MW	1 -
3	Μ	2
4	Μ	4
5	S	8 / / e
6	SW	8 M.T.S.
7	S.	16
8	Μ	16
9	Μ	16
10	MW	16 7
11	M	32

3.4 Majorana OR Weyl fields in D=4

Any field theory of a Majorana spinor field Ψ can be rewritten in terms of a Weyl field $P_L \Psi$ and its complex conjugate.

Conversely, any theory involving the chiral field $\chi = P_L \chi$ and its conjugate $\chi^C = P_R \chi^C$ can be rephrased as a Majorana equation if one defines the Majorana field $\Psi = P_L \chi + P_R \chi^C$.

Supersymmetry theories in D=4 are formulated in both descriptions in the physics literature.

Exercise on chapter 3

• Ex. 3.40: Rewrite $S[\Psi] = -\frac{1}{2} \int d^D x \, \bar{\Psi} [\gamma^{\mu} \partial_{\mu} - m] \Psi(x)$

as $S[\psi] = -\frac{1}{2} \int d^4 x \left[\bar{\Psi} \gamma^{\mu} \partial_{\mu} - m \right] \left(P_L + P_R \right) \Psi$ $= -\int d^4 x \left[\bar{\Psi} \gamma^{\mu} \partial_{\mu} P_L \Psi - \frac{1}{2} m \bar{\Psi} P_L \Psi - \frac{1}{2} m \bar{\Psi} P_R \Psi \right] .$

and prove that the Euler-Lagrange equations are $\partial P_L \Psi = m P_R \Psi, \qquad \partial P_R \Psi = m P_L \Psi.$

Derive $\Box P_{L,R}\Psi = m^2 P_{L,R}\Psi$ from the equations above

4. The Maxwell and Yang-Mills Gauge Fields

4.1 The Abelian gauge field $A_{\mu}(x)$

Couple to

$$\Psi(x) \rightarrow \Psi'(x) \equiv e^{iq\theta(x)}\Psi(x).$$

Due to

$$A_{\mu}(x) \to A'_{\mu}(x) \equiv A_{\mu}(x) + \partial_{\mu}\theta(x).$$

with covariant derivatives

$$D_{\mu}\Psi(x) \equiv (\partial_{\mu} - iqA_{\mu}(x))\Psi(x),$$

Field strengths couple to currents

$$\partial^{\mu}F_{\mu\nu} = -J_{\nu}, \qquad F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

4.3 Non-abelian gauge symmetry • Simplest: act by matrices and $[t_A, t_B] = f_{AB}{}^C t_C$ Gauge fields for any generator cov. derivative: $D_{\mu}\Psi = \left(\partial_{\mu} + gt_A A^A_{\mu}\right)\Psi$ needs transform: $\delta A^A_{\mu}(x) = \frac{1}{a} \partial_{\mu} \theta^A + \theta^C(x) A^B_{\mu}(x) f_{BC}^A$ • Curvatures $[D_{\mu}, D_{\nu}]\Psi = gF^{A}_{\mu\nu}t_{A}\Psi$ $F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu + g f_{BC}{}^A A^B_\mu A^C_\nu$ Typical action $S[A^A_{\mu}, \bar{\Psi}_{\alpha}, \Psi^{\alpha}] = \int \mathrm{d}^D x \left[-\frac{1}{4} F^{A\mu\nu} F^A_{\mu\nu} \right]$ $-\bar{\Psi}_{lpha}(\gamma^{\mu}D_{\mu}-m)\Psi^{lpha}$

Exercise on chapter 4

Ex. 4.17: Use the Jacobi identity to show that the matrices $(t_A)^D_E = f_{AE}^D$ satisfy $[t_A, t_B] = f_{AB}^C t_C$ and therefore give a representation Ex 4.21: Show that $D_{\mu}F_{\nu\rho}^{A} + D_{\nu}F_{\rho\mu}^{A} + D_{\rho}F_{\mu\nu}^{A} = 0$ is satisfied identically if $F_{\mu\nu}{}^A$ is written in the form $F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu + g f_{BC}{}^A A^B_\mu A^C_\nu$

6. N=1 Global supersymmetry in D=4

Classical algebra $\left\{Q_{\alpha}, Q_{\beta}\right\} = -\frac{1}{2}\gamma^{\mu}_{\alpha\beta}P_{\mu}$

 $[P, \mathbf{Q}] = \mathbf{0}$

$$[M_{\mu\nu}, Q] = -\frac{1}{2}\gamma_{\mu\nu}Q$$

6.2. SUSY field theories of the chiral multiplet Transformation under SUSY

$$\delta Z = \frac{1}{\sqrt{2}} \overline{\epsilon} P_L \chi,$$

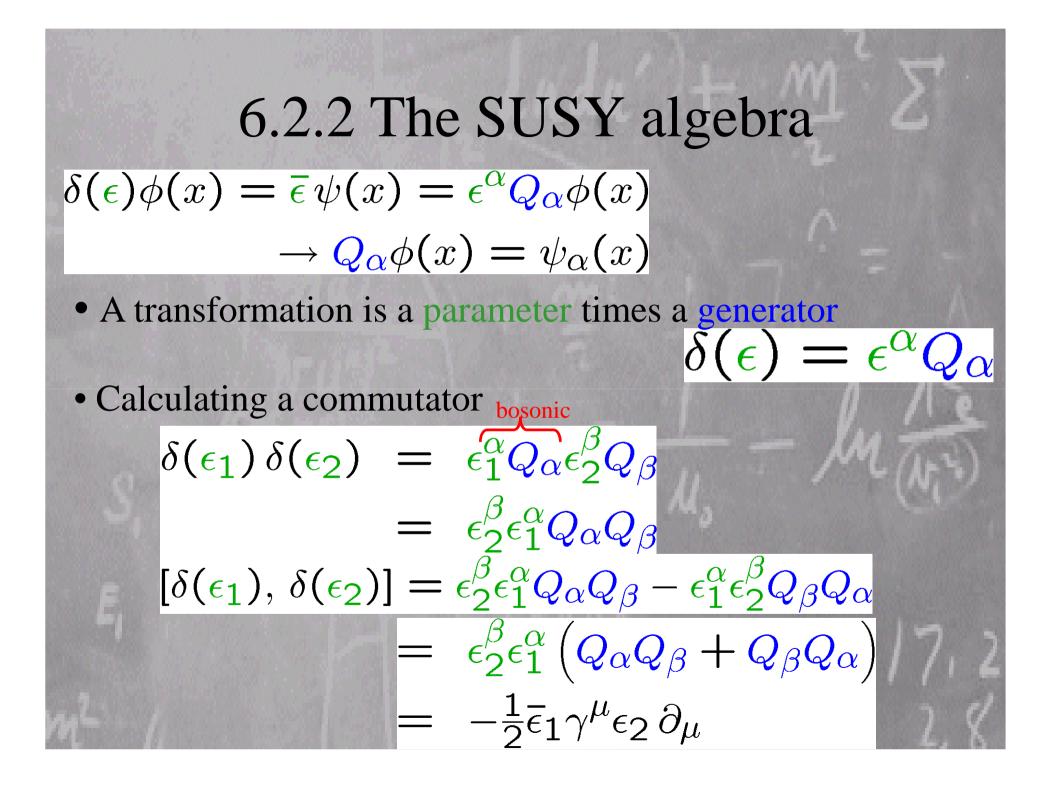
$$\delta P_L \chi = \frac{1}{\sqrt{2}} P_L (\partial Z + F) \epsilon,$$

$$\delta F = \frac{1}{\sqrt{2}} \overline{\epsilon} \partial P_L \chi$$

$$\delta \overline{F} = \frac{1}{\sqrt{2}} \overline{\epsilon} \partial P_R \chi,$$

$$\delta \overline{F} = \frac{1}{\sqrt{2}} \overline{\epsilon} \partial P_R \chi$$

$$\delta \overline{F} = \frac{1}{\sqrt$$



Calculating the algebra

- Very simple on Z
- On fermions: more difficult; needs Fierz rearrangement
 With auxiliary field: algebra satisfied for all field configurations
 Without auxiliary field: satisfied modulo field equations.
 auxiliary fields lead to
 - transformations independent of e.g. the superpotential
 - algebra universal : 'closed off-shell'
 - useful in determining more general actions
 - in local SUSY: simplify couplings of ghosts

$$6.3. SUSY gauge theories$$

$$6.3.1 SUSY Yang-Mills vector multiplet$$

$$Sgauge = \int d^4x \left[-\frac{1}{4} F^{\mu\nu A} F^A_{\mu\nu} - \frac{1}{2} \bar{\lambda}^A \gamma^\mu D_\mu \lambda^A + \frac{1}{2} D^A D^A \right],$$

$$\delta A^A_\mu = \frac{1}{2} \bar{\epsilon} \gamma_\mu \lambda^A,$$

$$\delta \lambda^A = \left[-\frac{1}{4} \gamma^{\rho\sigma} F^A_{\rho\sigma} + \frac{1}{2} i \gamma_* D^A \right] \epsilon,$$

$$\delta D^A = \frac{1}{2} i \bar{\epsilon} \gamma_* \gamma^\mu D_\mu \lambda^A, \qquad D_\mu \lambda^A \equiv \partial_\mu \lambda^A + \lambda^C A_\mu{}^B f_{BC}{}^A,$$

$$\delta(\theta) A^A_\mu = \partial_\mu \theta^A + \theta^C A_\mu{}^B f_{BC}{}^A,$$

$$\delta(\theta) D^A = \theta^C D^B f_{BC}{}^A,$$

$$\left[\delta_1, \delta_2 \right] A^A_\mu = -\frac{1}{2} \bar{\epsilon}_1 \gamma^\nu \epsilon_2 F^A_{\nu\mu},$$

$$\left[\delta_1, \delta_2 \right] D^A = -\frac{1}{2} \bar{\epsilon}_1 \gamma^\nu \epsilon_2 D_\nu \lambda^A,$$

$$\left[\delta_1, \delta_2 \right] D^A = -\frac{1}{2} \bar{\epsilon}_1 \gamma^\nu \epsilon_2 D_\nu D^A.$$

6.3.2 Chiral multiplets in SUSY gauge theories

Full theory

$$\begin{split} S &= S_{\text{gauge}} + S_{\text{matter}} + S_{\text{coupling}} + S_W + S_{\overline{W}} \,. \\ S_{\text{matter}} &= \int d^4 x \left[-D^{\mu} \overline{Z} D_{\mu} Z - \overline{\chi} \gamma^{\mu} P_L D_{\mu} \chi + \overline{F} F \right] \,, \\ S_{\text{coupling}} &= \int d^4 x \left[-\sqrt{2} (\overline{\lambda}^A \overline{Z} t_A P_L \chi - \overline{\chi} P_R t_A Z \lambda^A) + \mathrm{i} \, D^A \overline{Z} t_A Z \right] \\ S_F &= \int d^4 x \left[F^{\alpha} W_{\alpha} + \frac{1}{2} \overline{\chi}^{\alpha} P_L W_{\alpha\beta} \chi^{\beta} \right] \,, \\ S_{\overline{F}} &= \int d^4 x \left[\overline{F}_{\alpha} \overline{W}^{\alpha} + \frac{1}{2} \overline{\chi}_{\alpha} P_R \overline{W}^{\alpha\beta} \chi_{\beta} \right] \,. \end{split}$$

Modified chiral multiplet

$$\begin{split} \delta Z &= \frac{1}{\sqrt{2}} \overline{\epsilon} P_L \chi \,, \\ \delta P_L \chi &= \frac{1}{\sqrt{2}} P_L (\gamma^\mu D_\mu Z + F) \epsilon \,, \\ \delta F &= \frac{1}{\sqrt{2}} \overline{\epsilon} P_R \gamma^\mu D_\mu \chi - \overline{\epsilon} P_R \lambda^A t_A Z \end{split}$$

6.4 Massless representations of \mathcal{N} -extended supersymmetry

Notation left-right

$$Q_i = P_L Q_i, \qquad Q^i = P_R Q^i.$$

Algebra:

$$\begin{cases} Q_{i\alpha}, \bar{Q}^{j\beta} \\ \{Q_{i\alpha}, \bar{Q}^{j\beta} \\ \{Q_{i\alpha}, \bar{Q}^{\beta} \\ \{Q_{i\alpha}, \bar{Q}^{\beta} \\ \{Q_{i\alpha}, \bar{Q}^{\beta} \\ \{Q_{i\alpha}, \bar{Q}^{j\beta} \\ \{Q_{i\alpha},$$

6.4.1 Particle representations of *N* – extended supersymmetry
■ There is an argument that # bosonic d.o.f. = # fermionic d.o.f., based on {Q,Q}=P (invertible)

Should be valid for on-shell multiplets if eqs. of motion are satisfied: e.g. z : 2, χ : 2 ⇒ 2+2
for off-shell multiplets counting all components: e.g. z : 2, χ : 4, h : 2 ⇒ 4+4

Spin content of representations of supersymmetry with maximal spin $s_{max} \le 2$.

 $s{=}2 \quad s=3/2 \quad s=1 \quad s=1/2 \quad s=0$

$\mathcal{N} = 1$	$s_{max} = 2$	1	1			
	$s_{max} = 3/2$		1	1		
	$s_{\max} = 1$			1	1	
	$s_{\rm max} = 1/2$				1	1+1
$\mathcal{N} = 2$	$s_{max} = 2$	1	2	1		
	$s_{max} = 3/2$		1	2	1	
	$s_{max} = 1$			1	2	1 + 1
	$s_{max} = 1/2$				2	2 + 2
	0	-	0	0		
$\mathcal{N} = 3$	$s_{max} = 2$	1	3	3	1	1.1
	$s_{max} = 3/2$		1	3	-	1+1
	$s_{max} = 1$			1	3 +1	3 + 3
$\mathcal{N} = 4$	$s_{max} = 2$	1	4	6	4	1+1
	$\frac{s_{max}}{s_{max}} = 3/2$	-	1	4	6 +1	4 + 4
	$\frac{s_{max}}{s_{max}} = 1$			1	4	6
$\mathcal{N} = 5$	$s_{max}=2$	1	5	10	10 + 1	5 + 5
	$s_{max} = 3/2$		1	5 + 1	10 + 5	10 + 10
	_	-				
$\mathcal{N} = 6$	$s_{max} = 2$	1	6	15 + 1	20 + 6	15 + 15
	$s_{ m max}=3/2$		1	6	15	20
$\mathcal{N} = 7$. 0		511	01 1 7	95 1 01	25 1 25
$\mathcal{N} = \mathcal{C}$	$s_{max} = 2$	T	7 + 1	21 + 7	35 + 21	30 + 30
$\mathcal{N} = 8$	$s_{max} = 2$	1	8	28	56	70

Exercise on chapter 6

Ex. 6.11 : Consider the theory of the chiral multiplet after elimination of *F*. Show that the action

 $S = \int \mathrm{d}^4 x \left[-\partial^\mu \bar{Z} \partial_\mu Z - \bar{\chi} \partial P_L \chi - \overline{W}' W' - \frac{1}{2} \bar{\chi} (P_L W'' + P_R \overline{W}'') \chi \right]$

is invariant under the transformation rules

$$\delta Z = \frac{1}{\sqrt{2}} \overline{\epsilon} P_L \chi, \qquad \delta \overline{Z} = \frac{1}{\sqrt{2}} \overline{\epsilon} P_R \chi$$

$$\delta P_L \chi = \frac{1}{\sqrt{2}} P_L (\partial Z + F) \epsilon, \qquad \delta P_R \chi = \frac{1}{\sqrt{2}} P_R (\partial \overline{Z} + \overline{F}) \epsilon$$

$$F \equiv -W'(\overline{Z}), \qquad \overline{F} = -W'(Z)$$

Show that the commutator on the scalar is still

$$[\delta_1, \delta_2] Z = -\frac{1}{2} \overline{\epsilon}_1 \gamma^\mu \epsilon_2 \partial_\mu Z$$

but is modified on the fermion as follows:

$$[\delta_1, \delta_2] P_L \chi = \overline{\epsilon}_1 \gamma^\mu \epsilon_2 P_L \left[-\frac{1}{2} \partial_\mu \chi + \frac{1}{4} \gamma_\mu (\partial \!\!\!/ + \overline{W}'') \chi \right]$$

We find the spacetime translation plus an extra term that vanishes for any solution of the equations of motion.

7.9 Connections and covariant derivatives

$$\nabla_{\mu}V^{\rho} = \partial_{\mu}V^{\rho} + \Gamma^{\rho}_{\mu\nu}V^{\nu},$$

$$\nabla_{\mu}V_{\nu} = \partial_{\mu}V_{\nu} - \Gamma^{\rho}_{\mu\nu}V_{\rho},$$

metric postulate

$$\nabla_{\mu}g_{\nu\rho} \equiv \partial_{\mu}g_{\nu\rho} - \Gamma^{\sigma}_{\mu\nu}g_{\sigma\rho} - \Gamma^{\sigma}_{\mu\rho}g_{\nu\sigma} = 0$$

if there is no 'torsion' $\Gamma^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\nu\mu}$

$$\Gamma^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu}(g) = \frac{1}{2}g^{\rho\sigma}(\partial_{\mu}g_{\sigma\nu} + \partial_{\nu}g_{\mu\sigma} - \partial_{\sigma}g_{\mu\nu})$$

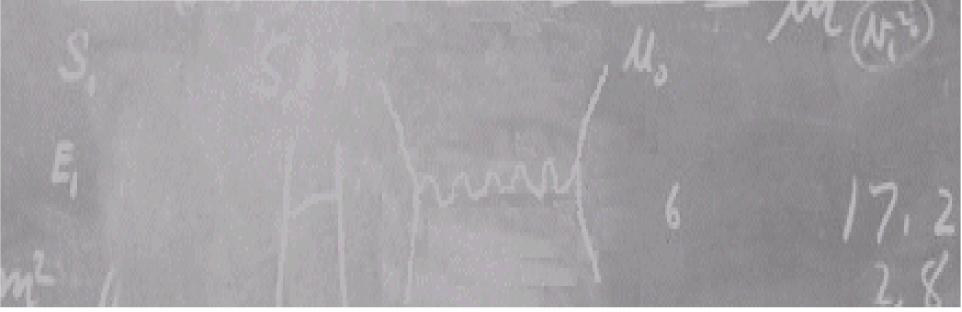
7.12 Symmetries and Killing vectors 7.12.1 σ - model symmetries Symmetries of action $S[\phi] = -\frac{1}{2} \int d^D x g_{ij}(\phi) \eta^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi^j$ can be parametrized as a general form $\delta(\theta)\phi^i = \theta^A k_A{}^i(\phi)$ Each $k_A{}^i$ (for every value of A) should satisfy $\nabla_i k_{jA} + \nabla_j k_{iA} = 0, \qquad k_{iA} = g_{ij} k_A^j, \qquad \nabla_i k_{jA} = \partial_i k_{jA} - \Gamma_{ij}^k(g) k_{kA}$ Solutions are called 'Killing vectors' $k_A \equiv k_A^j \frac{\partial}{\partial \phi^j}$ and satisfy an algebra $[k_A, k_B] = f_{AB}{}^C k_C$

7.12.2 Symmetries of the Poincaré plane

Poincaré plane (X, Y>0)

$$\mathrm{d}s^2 = \frac{\mathrm{d}X^2 + \mathrm{d}Y^2}{Y^2} = \frac{\mathrm{d}Z\mathrm{d}\bar{Z}}{Y^2}$$

SL(2, \mathbb{R}) transformations act as nonlinear maps $Z \rightarrow Z' = \frac{aZ+b}{cZ+d} = X' + iY'$



Exercise on chapter 7

Ex. 7.48: Consider for the Poincaré plane Z and Z
 as the independent fields, rather than X and Y, and use the line element
 ds² = dX² + dY²/Y² = dZdZ

 The metric components are

$$g_{ZZ} = g_{\bar{Z}\bar{Z}} = 0, \qquad g_{Z\bar{Z}} = g_{\bar{Z}Z} = -\frac{2}{(Z - \bar{Z})^2}$$

Show that the only non-vanishing components of the Christoffel connection are $\Gamma_{ZZ}{}^{Z}$ and its complex conjugate. Calculate them and then show that there are three Killing vectors,

$$k_1^Z = 1$$
, $k_2^Z = Z$, $k_3^Z = Z^2$
each with conjugate. Show that their Lie brackets give a Lie algebra
whose non-vanishing structure constants are
 $f_{12}{}^1 = 1$, $f_{13}{}^2 = 2$, $f_{23}{}^3 = 1$
This is a standard presentation of the Lie algebra of
 $\mathfrak{su}(1,1) = \mathfrak{so}(2,1) = \mathfrak{sl}(2)$

12. Survey of supergravities

To get an overview of what is possibleand how geometry enters in supergravity

12.1 The minimal superalgebras 12.1.1. D=4 • Minimal algebra $\left\{Q_{\alpha}, Q_{\beta}\right\} = -\frac{1}{2}\gamma^{a}_{\alpha\beta}P_{a}$ $[P, Q] = 0 \quad [M_{ab}, Q] = -\frac{1}{2}\gamma_{ab}Q$ Extension (using Weyl spinors and position of indices indicating chirality) $Q_i = P_L Q_i$, $Q^i = P_B Q^i$ $\left\{Q_{i\alpha}, Q_{\beta}^{j}\right\} = -\frac{1}{2}\delta_{i}^{j}(P_{L}\gamma^{a})_{\alpha\beta}P_{a},$ $\left\{Q_{i\alpha},Q_{j\beta}\right\}=0,\qquad \left\{Q^i_{\alpha},Q^j_{\beta}\right\}=0,$ Algebras exist for any \mathcal{N} . Field theory : $\mathcal{N} \leq 8$ i.e. at most 32 real supercharges.

SUSY: $\mathcal{N} \leq 4$: 16 real supercharges

12.1.2. Minimal superalgebras in							
higher dimensions		-					
$\left\{ Q_{\alpha}, Q_{\beta} \right\} = -\frac{1}{2} \gamma^{a}_{\alpha\beta} P_{a}$	D		#				
■ is only consistent for $t_1 = -1$, i.e. Majorana	4	Μ	4				
previous can also be applied to D=8:	5	S	8				
but then only N=1 or N=2.	6	SW	8				
Also same (without chirality)	7	S /I	16				
for D=9 (N=1 or N=2) and D=11 (N=1)	8	-IN	16				
■ D=10: supercharges can be chiral.	9	M	16				
The two Q's should have equal chirality	10	MW	16				
- 1 chiral supercharge : "type I"		M	32				
- 2 of opposite chirality "type IIA"		11	12				
- 2 of same chirality: type IIB"		2	.8				

12.2 The R-symmetry group Supersymmetries may rotate under an automorphism group. E.g. for 4 dimensions: $[T_A, Q_{\alpha i}] = (U_A)_i{}^j Q_{\alpha j} \quad [T_A, Q_\alpha^i] = (U_A)^i{}_j Q_\alpha^j$ • related by charge conjugation: $(U_A)_i^j = ((U_A)_i^i)^*$ - Jacobi identities [TTQ] : U forms a representation of *T*-algebra Jacobi identities [*TQQ*] : $(U_A)_i{}^j = -(U_A)^j{}_i \equiv -((U_A)_j{}^i)^*$ \rightarrow forms U(\mathcal{N}) group

R-symmetry groups

group that rotates susys: $\begin{bmatrix} T_A, Q^i_\alpha \end{bmatrix} = (U_A)^i{}_j Q^j_\alpha$ Majorana spinors in odd dimensions: SO(N) (D=3,9)

 Majorana spinors in even dimensions: U(N) (D=4,8)

• Majorana-Weyl spinors: $SO(N_L) \times SO(N_R)$

Symplectic spinors:
 USp(N)

(D=2,10)

(D=5,7)

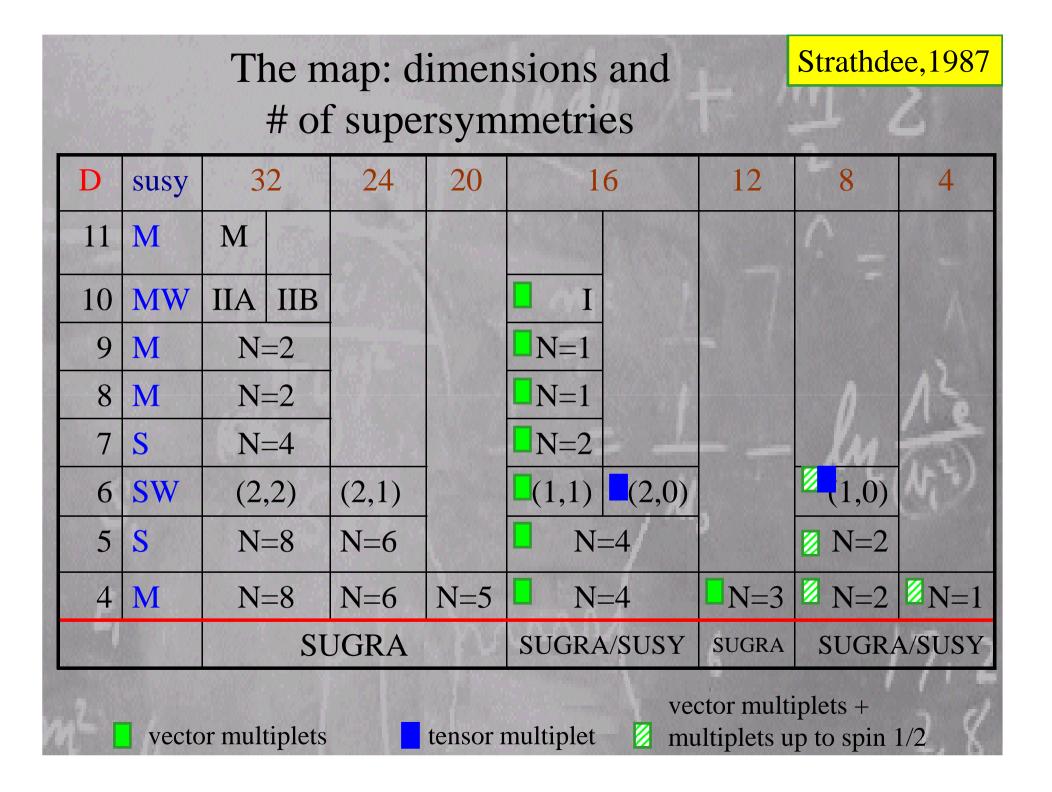
Symplectic Majorana-Weyl spinors: $USp(N_L) \times USp(N_R)$ (D=6)

12.4 Supergravity theories: towards a catalogue

■ basic theories and kinetic terms $e^{-1}\mathcal{L}_{bos} = \frac{1}{2}R + \frac{1}{4}(\operatorname{Im}\mathcal{N}_{AB})\mathcal{F}^{A}_{\mu\nu}\mathcal{F}^{\mu\nu B}_{-\frac{1}{8}}(\operatorname{Re}\mathcal{N}_{AB})e^{-1}\varepsilon^{\mu\nu\rho\sigma}\mathcal{F}^{A}_{\mu\nu}\mathcal{F}^{B}_{\rho\sigma} - \frac{1}{2}g_{ij}\partial_{\mu}\varphi^{i}\partial^{\mu}\varphi^{j}$

deformations and gauged supersymmetry

- covariant derivatives and field strengths
- potential for the scalars



12.5 Scalars and geometry

- Scalar manifold can have isometries (symmetry of kinetic energy $ds^2 = g_{ij} d\phi^i d\phi^j$)
- usually extended to symmetry of full action
 - ('U-duality group')
- The connection between scalars and vectors in the matrix $\mathcal{N}_{AB}(\phi)$
 - \Rightarrow isometries act also as duality transformations
- A subgroup of the isometry group (at most of dimension m) can be gauged.

Homogeneous / Symmetric manifolds

- If isometry group *G* connect all points of a manifold \rightarrow homogeneous manifold.
 - Such a manifold can be identified with the coset G/H, where H is the isotropy group: group of transformations that leave a point invariant
- If the algebras \mathfrak{g} of G and \mathfrak{h} of H have the structure

 $\begin{aligned} \forall g \in \mathfrak{g} &: g = h + k, \qquad h \in \mathfrak{h}, \qquad k \in \mathfrak{k}, \\ \forall h_1, h_2 \in \mathfrak{h}, \ k_1, k_2 \in \mathfrak{k} &: [h_1, h_2] \in \mathfrak{h}, \qquad [h_1, k_1] \in \mathfrak{k}, \qquad [k_1, k_2] \in \mathfrak{h} \end{aligned}$

then the manifold is symmetric.

The curvature tensor is covariantly constant

Geometries in supergravity

 $\mathcal{L} = \sqrt{g} g^{\mu\nu} (\partial_{\mu} \varphi^{i}) (\partial_{\nu} \varphi^{j}) g_{ij}(\varphi)$

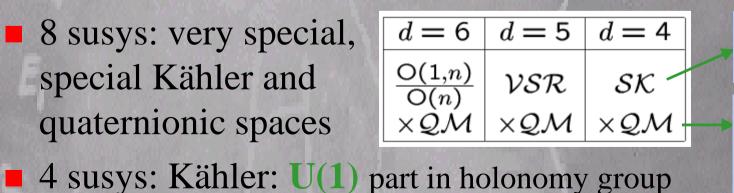
- Scalar manifolds for theories with more than 8 susys are symmetric spaces:
- Scalar manifolds for theories with 4 susys $(\mathcal{N}=1, D=4, \text{ or lower } D)$ are Kähler
- Scalar manifolds for theories with 8 susys are called 'special manifolds'. Include real, special Kähler, quaternionic manifolds They can be symmetric, homogeneous, or not even that

The map of geometries

With > 8 susys: symmetric spaces

d	32	24	20	16		12
9	$\frac{S\ell(2)}{SO(2)}\otimes O(1,1)$			$rac{\mathrm{O}(1,n)}{\mathrm{O}(n)}\otimes\mathrm{O}(1,1)$		
8	$rac{{S}\ell(3)}{{SU}(2)}\otimesrac{{S}\ell(2)}{{U}(1)}$			$rac{{ m O}(2,n)}{{ m U}(1) imes { m O}(n)}\otimes { m O}(1,1)$		
7	<u>Sℓ(5)</u> USp(4)			$rac{\mathrm{O}(3,n)}{\mathrm{USp}(2) imes \mathrm{O}(n)}\otimes \mathrm{O}(1,1)$		
6	$\frac{O(5,5)}{USp(4)\times USp(4)}$	SO(5,1) SO(5)		$rac{\mathrm{O}(4,n)}{\mathrm{O}(n) imes SO(4)}\otimes\mathrm{O}(1,1)$	$rac{\mathrm{O}(5,n)}{\mathrm{O}(n) imes \mathrm{USp}(4)}$	
5	E ₆ USp(8)	<u>SU*(6)</u> USp(6)		$rac{\mathrm{O}(5,n)}{\mathrm{USp}(4) imes \mathrm{O}(n)}\otimes \mathrm{O}(1,1)$		
4	E ₇ SU(8)	$\frac{SO^{*}(12)}{U(6)}$	SU(1,5) U(5)	$\frac{SU(1,1)}{U(1)} \times \frac{SO(6,n)}{SU(4) \times SO(n)}$		$\frac{SU(3,n)}{U(3)\timesSU(n)}$

8 susys: very special, special Kähler and quaternionic spaces



U(1) part in holonomy group **SU(2)=USp(2)**

part in holonomy group

Exercise on Chapter 12

Ex.12.3 Consider an arbitrary point in the Poincaré plane and find the Killing vector c^A k_A that vanishes. Check that the other two Killing vectors in that point are independent.

- Ex.12.4 Why do the isotropy generators define a group? How do you associate the manifold to the coset space?
- Ex 12.5 Check that the Poincaré plane is a symmetric space.

13. Complex manifolds13.1 The local description of complex and Kähler manifolds

Use complex coordinates

$$\{z^a\} = \{z^\alpha, \overline{z}^\alpha\}$$
 $a = 1, \dots, 2n; \alpha, \overline{\alpha} = 1, \dots, n$

$$\mathrm{d}s^2 = 2g_{\alpha\bar{\beta}}\mathrm{d}z^\alpha\mathrm{d}\bar{z}^{\bar{\beta}}$$

Hermitian manifold

define fundamental 2-form $\Omega = -2ig_{\alpha\overline{\beta}}dz^{\alpha} \wedge d\overline{z}^{\beta}$

Kähler manifold: closed fundamental 2-form

$$\mathrm{d}\Omega = -\mathrm{i}(\partial_{\gamma}g_{\alpha\overline{\beta}} - \partial_{\alpha}g_{\gamma\overline{\beta}})\mathrm{d}z^{\gamma}\wedge\mathrm{d}z^{\alpha}\wedge\mathrm{d}\overline{z}^{\overline{\beta}} + \mathrm{c.c.} = 0$$

Properties of metric, connection, curvature for Kähler manifolds metric derivable from a 'Kähler potential' $g_{\alpha\bar{\beta}} = \partial_{\alpha}\partial_{\bar{\beta}}K(z,\bar{z})$ connections have only unmixed components $\Gamma^{lpha}_{\beta\gamma} = g^{lpha\delta}\partial_{\beta}g_{\gamma\overline{\delta}}, \qquad \Gamma^{\overline{lpha}}_{\overline{\beta}\overline{\gamma}} = g^{\delta\overline{lpha}}\partial_{\overline{eta}}g_{\delta\overline{\gamma}}.$ curvature components related to $R_{\overline{\delta}\gamma}{}^{\alpha}{}_{\beta} = \partial_{\overline{\delta}} \Gamma^{\alpha}_{\beta\gamma} \quad \text{(two holomorphic indices up and}$ down, and symmetric in these pairs) Ricci tensor $R_{ab} = g^{cd}R_{acbd} = R_{ba}$ $R_{\alpha\bar{\beta}} = g^{\gamma\gamma}R_{\alpha\bar{\gamma}\bar{\beta}\gamma} = -R_{\alpha\bar{\beta}\gamma}{}^{\gamma} = -\partial_{\alpha}\partial_{\bar{\beta}}(\log\det g_{\gamma\bar{\delta}})$

13.2 Mathematical structure of Kähler manifolds

starts from a complex structure

- almost complex: tensor on tangent space $J_i^k J_k^j = -\delta_i^j$
- Nijenhuis tensor vanishes. In presence of a torsion-free connection, this is implied by covariant constancy of complex structure $\nabla_k J_i{}^j = \partial_k J_i{}^j - \Gamma^{\ell}_{ki} J_{\ell}{}^j + \Gamma^{j}_{k\ell} J_i{}^{\ell} = 0$
- metric hermitian : $JgJ^T = g$ and Levi-Civita connection of this metric is used above

Then the Kähler form is $\Omega = -J_{ij} d\phi^i \wedge d\phi^j$, $J_{ij} = J_i^k g_{kj}$

In complex coordinates

$$J = \begin{pmatrix} \mathrm{i}\delta_{\alpha}{}^{\beta} & \mathrm{O} \\ \mathrm{O} & -\mathrm{i}\delta_{\bar{\alpha}}{}^{\bar{\beta}} \end{pmatrix}$$

13.4 Symmetries of Kähler metrics 13.4.1 Holomorphic Killing vectors and moment maps

 $\delta \phi^{i} = \theta k^{i}(\phi) \quad \text{or} \quad \delta z^{\alpha} = \theta k^{\alpha}(z, \overline{z})$ • require vanishing Lie derivatives of metric *and* of complex structure.

Implies that in complex coordinates

- the Killing vector is holomorphic
- Lie derivative of Killing form vanishes
 - \rightarrow Killing vectors determined by real moment map \mathcal{P}

PS: a Kähler manifold is a symplectic manifold due to the existence of the Kähler 2-form. Moment map is generating function of a canonical transformation

$$\begin{array}{rcl} 0 &=& \mathcal{L}_k \Omega = (i_k \mathrm{d} + \mathrm{d} i_k) \,\Omega = \mathrm{d} i_k \Omega \\ i_k \Omega &=& -2 \mathrm{d} \mathcal{P} \\ k_\alpha &=& g_{\alpha \bar{\beta}} \, k^{\bar{\beta}}(\bar{z}) = \mathrm{i} \partial_\alpha \, \mathcal{P}(z, \bar{z}) \,, \\ k_{\bar{\alpha}} &=& g_{\beta \bar{\alpha}} \, k^{\beta}(z) = -\mathrm{i} \partial_{\bar{\alpha}} \, \mathcal{P}(z, \bar{z}) \,. \end{array}$$

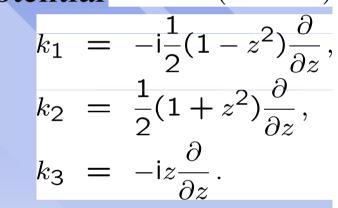
Kähler transformations and the moment map
• Kähler potential is not unique:
$$g_{\alpha\bar{\beta}} = \partial_{\alpha}\partial_{\bar{\beta}}K(z,\bar{z})$$

• Kähler transformations
 $K(z,\bar{z}) \rightarrow K'(z,\bar{z}) = K(z,\bar{z}) + f(z) + \bar{f}(\bar{z})$
• Also for symmetries
 $\delta K = \theta \left(k^{\alpha}\partial_{\alpha} + k^{\bar{\alpha}}\partial_{\bar{\alpha}}\right) K(z,\bar{z}) = \theta \left[r(z) + \bar{r}(\bar{z})\right]$
 $\mathcal{P}(z,\bar{z}) = i \left[k^{\alpha}\partial_{\alpha}K(z,\bar{z}) - r(z)\right] = -i \left[k^{\bar{\alpha}}\partial_{\bar{\alpha}}K(z,\bar{z}) - \bar{r}(\bar{z})\right].$

Exercises on chapter 13

- Ex. 13.14: Show that the metric of the Poincaré plane of complex dimension 1 is a Kähler metric. What is the Kähler potential?
- **Ex. 13.18:** Consider CP¹ with Killing potential $K = \ln(1 + z\bar{z})$
 - Check that there are 3 Killing vectors
 - that satisfy the su(2) algebra

 $[k_A, k_B] = \varepsilon_{ABC} k_C$



Ex. 13.20: Apply $\delta K = \theta^A \left(k_A^z \partial_z + k_A^{\overline{z}} \partial_{\overline{z}} \right) K(z, \overline{z}) = \theta^A \left[r_A(z) + \overline{r}_A(\overline{z}) \right]$ to obtain $r_1 = \frac{1}{2} i z$, $r_2 = \frac{1}{2} z$, $r_3 = -\frac{1}{2} i$ Note that the Kähler potential is invariant under k_3 , but still $r_3 \neq 0$. Its value is fixed by the 'equivariance relation'

$$k_A{}^{\alpha}g_{\alpha\overline{\beta}}k_B{}^{\overline{\beta}} - k_B{}^{\alpha}g_{\alpha\overline{\beta}}k_A{}^{\overline{\beta}} = \mathrm{i}f_{AB}{}^C\mathcal{P}_C$$

14. General actions with $\mathcal{N}=1$ supersymmetry 14.1 Multiplets

- Multiplets are sets of fields on which the supersymmetry algebra is realized.
- A chiral multiplet is a multiplet in which the transformation of the lowest (complex scalar) component involves only $P_L \epsilon$.
- A real multiplet is a multiplet in which the lowest component is a real scalar.
- Allowing general SUSY transformations with these requirements determines the multiplet

14.1.1 Chiral multiplets

$$\delta Z = \frac{1}{\sqrt{2}} \overline{\epsilon} P_L \chi,$$

$$\delta P_L \chi = \frac{1}{\sqrt{2}} P_L (\partial Z + F) \epsilon,$$

$$\delta F = \frac{1}{\sqrt{2}} \overline{\epsilon} \partial P_L \chi$$

14.1.2 Real multiplets

$$\begin{split} \delta C &= \frac{1}{2} i \overline{\epsilon} \gamma_* \zeta, \\ \delta P_L \zeta &= \frac{1}{2} P_L \left(i \mathcal{H} - \mathcal{B} - i \partial C \right) \epsilon, \\ \delta \mathcal{H} &= -i \overline{\epsilon} P_R \left(\lambda + \partial \zeta \right), \\ \delta \mathcal{B}_\mu &= -\frac{1}{2} \overline{\epsilon} \left(\gamma_\mu \lambda + \partial_\mu \zeta \right), \\ \delta \lambda &= \frac{1}{2} \left[\gamma^{\rho\sigma} \partial_\rho B_\sigma + i \gamma_* D \right] \epsilon, \\ \delta D &= \frac{1}{2} i \overline{\epsilon} \gamma_* \gamma^\mu \partial_\mu \lambda. \end{split}$$

gauge multiplet is a submultiplet: a real multiplet with only components invariant under a supergauge transformation $C \rightarrow C + \text{Im } Z$ Wess-Zumino gauge : $C = \zeta = \mathcal{H} = 0$

14.2 Generalized actions by
multiplet calculus
$$S_F = \int d^4 x F, \qquad S_D = \int d^4 x D$$

are invariant under SUSY,

$$\delta S_F = \int d^4 x \, \delta F = \frac{1}{\sqrt{2}} \int d^4 x \, \bar{\epsilon} \partial P_L \chi = 0,$$

$$\delta S_D = \int d^4 x \, \delta D = \frac{1}{2} \mathbf{i} \int d^4 x \, \bar{\epsilon} \gamma_* \partial \lambda = 0.$$

Can be applied to 'composite multiplets' constructed from elementary ones. Reality : *D* is real, but *F* is complex: add complex conjugate Terminology: *F*-type actions for composite chiral multiplets, *D*-type actions for composite real multiplets

14.2.1 The superpotential • Start with W(Z): is chiral \rightarrow *F*-action 14.2.2 Kinetic terms for chiral multiplets • Start from $K(Z, \overline{Z})$: is real $\rightarrow D$ -action 14.2.3 Kinetic terms for gauge multiplets • See that P_{I} λ transforms chirally • Start with $f_{AB}(Z)\bar{\lambda}^A P_L \lambda^B$: is chiral \rightarrow F-action

$$\mathcal{L} = [K(Z,\bar{Z})]_D + [W(Z)]_F + \left[f_{AB}(Z)\bar{\lambda}^A P_L \lambda^B\right]_A$$

$$\begin{split} & 14.3 \text{ K\"ahler geometry}\\ & \text{from chiral multiplets} \end{split}$$

$$\begin{split} & \text{K\"ahler metric}\\ & D(\frac{1}{2}K) = \begin{pmatrix} K_{\alpha\overline{\beta}} \begin{pmatrix} -\partial\mu Z^{\alpha} \partial^{\mu} \overline{Z}^{\overline{\beta}} - \frac{1}{2} \overline{\chi}^{\alpha} P_{L} \partial \!\!\!/ \chi^{\overline{\beta}} - \frac{1}{2} \overline{\chi}^{\overline{\beta}} P_{R} \partial \!\!/ \chi^{\alpha} + F^{\alpha} \overline{F}^{\overline{\beta}} \end{pmatrix} \\ & + \frac{1}{2} \begin{bmatrix} K_{\alpha\beta\overline{\gamma}} \begin{pmatrix} -\overline{\chi}^{\alpha} P_{L} \chi^{\beta} \overline{F}^{\overline{\gamma}} + \overline{\chi}^{\alpha} P_{L} (\partial \!\!/ Z^{\beta}) \chi^{\overline{\gamma}} \end{pmatrix} + \text{h.c.} \end{bmatrix} \\ & + \frac{1}{4} K_{\alpha\beta\overline{\gamma}\overline{\delta}} \overline{\chi}^{\alpha} P_{L} \chi^{\beta} \overline{\chi}^{\overline{\gamma}} P_{R} \chi^{\overline{\delta}} . \end{split}$$
elimination of auxiliary fields
$$& F^{\alpha} = \frac{1}{2} g^{\alpha\overline{\beta}} K_{\gamma\beta\overline{\beta}} \overline{\chi}^{\gamma} P_{L} \chi^{\beta} = \frac{1}{2} \Gamma^{\alpha}_{\gamma\beta} \overline{\chi}^{\gamma} P_{L} \chi^{\beta} . \end{split}$$

$$& S(K)|_{F} = \int d^{4}x \left[g_{\alpha\overline{\beta}} \left(-\partial\mu Z^{\alpha} \partial^{\mu} \overline{Z}^{\overline{\beta}} - \frac{1}{2} \overline{\chi}^{\alpha} P_{L} \nabla \!\!/ \chi^{\overline{\beta}} - \frac{1}{2} \overline{\chi}^{\overline{\beta}} P_{R} \nabla \!\!/ \chi^{\alpha} \right) \right. \\ & \left. + \frac{1}{4} R_{\alpha\overline{\gamma}\beta\overline{\delta}} \overline{\chi}^{\alpha} P_{L} \chi^{\beta} \overline{\chi}^{\overline{\gamma}} P_{R} \chi^{\overline{\delta}} \right] . \end{split}$$